
FRACTAL STRUCTURES IN PbF2/Pb(NO3)2 PRECIPITATE SYSTEMS

Lara MANDALIAN1 and Rabih SULTAN2,*
Department of Chemistry, American University of Beirut, Beirut, Lebanon;
e-mail: 1 laroshka77@hotmail.com, 2 rsultan@aub.edu.lb

Received June 24, 2002
Accepted November 12, 2002

Tree-like aggregates (dendrites) have been reported in a variety of precipitate systems. We
here explore different routes for the growth of dendrites of PbF2 and Pb(NO3)2. The PbF2
ramifications form via the interdiffusion of coprecipitates (F– into Pb2+) in microslides
(Liesegang-type experiments) and via the infiltration of electrolyte through cracks, thus sim-
ulating geochemical fractals. The Pb(NO3)2 dendrites are grown by evaporation of dilute so-
lutions of the salt. Images of the various patterns obtained are analyzed and their fractal
dimensions are determined. The location of the edges of successive “cascades” in dendritic
patterns obeys a spacing law similar to that of Liesegang bands.
Keywords: Liesegang; Periodic precipitation; Fractals; Dendrites; Infiltration; Lead; Fluorides;
Crystallizations.

In an earlier paper1, we explored the various crystalline shapes found in pe-
riodic precipitation systems. Exotic crystal morphologies characterize a
wide class of precipitate patterns in gelled media. Uniform precipitation
fronts2, Liesegang bands3,4 and speckled patterns1 mostly appear in systems
where a gel region containing a specific ion is invaded by a solution of its
coprecipitate. Although the precipitate domains in such systems may con-
sist of thick, compact bands, they sometimes are distinctly made up of iso-
lated particles of characteristic crystalline shape. Examples of selected
crystals include spots, needles, crystallites and notably dendrites, of fractal
nature. Dendrites are tree-like aggregates with complex branching and ram-
ification manifested on widely different length scales. Fractal dendritic
structures can be found in a variety of natural and biological systems such
as trees, snow flakes, dry soil cracks, bacteria colonies and networks of
nerves, blood vessels and lung tubes5,6. In chemical systems, dendrite for-
mation is mostly observed in precipitation7–10 and electrodeposition of
metals11–14. In geology, dendrites and branched structures characterize the
growth of certain minerals (such as manganese oxide) in rocks15,16. Theo-
retically, the dynamics in colloidal aggregates was simulated by the diffu-
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sion-limited aggregation (DLA) model17,6. The computer simulations yield
chain structures with tree-like ramifications, much resembling the afore-
mentioned branching systems. An elaborate reaction-diffusion-aggregation
model was proposed by Chopard et al.16 as a simple mechanism for the pre-
cipitation and growth of mineral dendrites. Büki et al.9 obtained dendrites
by simulation of a diffusion-supersaturation model where probabilistic nu-
cleation was induced by random concentration fluctuations. Bacterial col-
ony aggregates display various branching patterns5, ranging from DLA-like
to dense branching morphology (DBM) structures18.

Fractal objects are mostly characterized by their “fractal dimension” D, a
non-integer number lying between the topological dimension (DT) and the
embedded dimension (E) of the object19. Typically, for a two-dimensional
surface, the embedded dimension is 2 and thus 1 < D < 2. While mathemat-
ical fractals20,21 are generated by a deterministic rule, physical fractals are
more or less random with no high level of symmetry6. Yet, the latter resem-
ble deterministic fractals in their dilation properties just like stochastic
mathematical fractals resemble their symmetric analogs, and are self-similar
in a statistical sense19,6.

In a previous paper1, we reported a set of experiments on PbF2 precipita-
tion in agar gel whose original aim was to study the Liesegang band forma-
tion in this system. We observed two main categories of phenomena
depending on which is the diffusing electrolyte (i.e. Pb2+ or F–) and which
electrolyte is in the gel. With Pb2+ above and F– below (in a vertical tube),
distinct Liesegang bands were obtained at all concentration ranges. When
the roles of the coprecipitates were reversed (Pb2+ in the gel, F– diffusing), a
variety of patterns displaying different crystal shapes, notably spots and
dendrites was obtained in the total absence of Liesegang bands. It was espe-
cially interesting to observe a network of dendritic structures even in thin
tubes of 5.0 mm diameter, shown in Fig. 1a.

Because of the richness of such structures, the experiments were repeated
in microslides for a more convenient observation under microscope. Macro-
scopic pattern of a sample grown in a gel sandwiched between two micro-
slides (in a Liesegang-type experiment) is shown in Fig. 1b.

In the present paper, we focus on the development of various experimen-
tal methods for preparing dendritic precipitate patterns with a testing of
their reproducibility, along with their characterization from the viewpoint
of fractal growth. The aims of the study may thus be summarized as fol-
lows:

1. Reporting a set of experiments that describe different routes for obtain-
ing precipitate patterns with dendritic networks. One route notably pro-
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vides an interesting analogy with geological infiltration of mineral-rich
water in a rock fissure or crack15.

2. Characterizing those dendrites by calculating the fractal dimension
using the box-count method22 (see Results and Discussion). The calcula-
tions will be performed on scanned images of the various patterns taken on
a microscopic level.

EXPERIMENTAL

Routes for Precipitate Dendrites

We present here a set of precipitate patterning experiments where dendrite structures are ob-
tained. Three main routes for the growth of dendritic crystals are described: interdiffusion
(Liesegang-type procedure), infiltration and evaporation.

Interdiffusion (Classic Liesegang) Experiments

Two glass microslides with a spacer of thickness 2.5 mm were sealed with silicone except
from the top (i.e. leaving one end open). A gel solution was prepared by boiling a solution
that is 1% in agar and contains Pb(NO3)2 of variable concentrations (0.20–0.50 M). The hot
solution was poured into the inter-slide cavity and allowed to cool. After the gel solidified,
a 1.0 M KF solution was poured on the top of the gel and sealed with silicone to prevent
evaporation. A dense zone of PbF2 precipitate was first observed. After a long time (around
35 days), a pattern of branching PbF2 dendrites appeared and spread over the whole area in
the course of several days. We refer to this procedure as one of the Liesegang type, because
the procedure is similar in that a solution of a given ion is allowed to diffuse into a gel solu-
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FIG. 1
Dendrites of PbF2 grown in tubes (a) and in glass microslides (b). In both cases, a solution of F–

ions diffuses into an agar gel containing Pb2+. [F–]0 = 1.0 M, [Pb2+]0 = 0.4 M. Gel medium thick-
ness 2.5 mm; gel width 1.7 cm. The black frames in b correspond to those of Fig. 2, shown
there while magnified and photographed under microscope (see Fig. 2)

a b



tion of its coprecipitate. Note, however, that no Liesegang bands were obtained except when
the roles of the electrolyte solutions were inverted1. The concentration ranges that actually
give dendrites were chosen as directed in ref.1, where the various domains yielding different
types of crystal structures were determined. Figure 1a shows dendritic flakes in a tube; while
Fig. 1b displays a typical network of branched dendrites grown between glass microslides.
Frames a–d of Fig. 2 display photomicrographs of regions of the same pattern (as the one in
Fig. 1b) at various selected locations. Image analysis of those pictures is presented in Results
and Discussion. Another set of experiments was performed between methacrylate glass
microslides separated by 1.5 mm spacers. The width of the gel surface was decreased to in-
duce a more directional character of the dendrites. Exactly the same procedure was followed,
but here elongated cascades of branched structures of a less random nature were consistently
observed, evolving gradually downwards. The time sequence after the onset of first ramifica-
tions is displayed in Fig. 3. The dendrites emerging from the bottom after 41 days may be
attributed to a state of supersaturation with no initiation of nucleation, resulting in a zone
void of precipitate. After diffusion has reached the bottom, nucleation was apparently initi-
ated and the growing dendrites continued to fill the gap zone (see image at 42 days). Due
to the slight opaqueness of the organic glass and the small size of the constituent images,
Fig. 3 lacks clarity here, and a magnification is provided on the web at the link:
http://staff.aub.edu.lb/~rsultan/Images/Fig3.jpg. The edges of consecutive cascades in the
pattern seemed to satisfy the spacing law observed in Liesegang bands. The locations (xn)
were determined at the edge of each cascade right after its completion, and are depicted in
Fig. 4.

Note that the edges are easy to locate because there is a time lag between two successive
cascades as can be inferred from the time sequence of Fig. 3. The edge locations (relative
to the interface between the gel and the outer solution, denoted xn) along with the spacing
ratios ρn = xn+1/xn are given in Table I.

We can see that the spacing ratio (which is always >1) decreases slightly as the number n
increases just like in a banded Liesegang pattern. A similar observation on the spacing law
in cascades of dendrites was reported by Zrínyi et al.9 in PbI2 experiments. Figure 5 shows
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FIG. 2
Photomicrographs of the PbF2 dendrites obtained between microslides, shown in Fig. 1b. The
first three (frames a, b and c) correspond to the regions in the black frames of Fig. 1b. The pat-
tern in frame d is not shown in the macroscopic picture. The fractal dimensions corresponding
to these patterns were calculated and recorded in Table II

a b c d
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FIG. 4
The same pattern as in Fig. 3 with positions of the edges of successive cascades, measured (in cm)
from the interface between the gel and the diffusing solution. The spacing ratio seems to agree
with that observed in Liesegang banding systems (see Table I)

FIG. 3
Time sequence of the growth of dendrites in methacrylate glass slildes with gel thickness of 1.5 mm;
gel width 0.9 cm. The time (in days) is shown under each picture. [F–]0 = 1.0 M, [Pb2+]0 = 0.3 M.
Unlike the random dendrites of Fig. 2, the pattern here appears as directional cascades whose
edges stop at specific time steps

35 37

39

41 42

TABLE I
Locations of cascade edges (xn) and spacing ratios (ρn) in the dendrite pattern of Figs 3 and 4

n xn, cm ρn

1 1.28 –
2 2.04 1.59
3 2.91 1.43
4 4.05 1.39



portions of the dendritic patterns of Fig. 4 observed under microscope. Fractal characteristics
of those cascades are considered in Results and Discussion.

Infiltration Experiments

In this section, we report some experiments in which PbF2 dendrites are formed in a way
similar to the growth of crystals in minerals, in the cracks and fissures of rocks. The proce-
dure was similar to that described briefly in ref.15 Two glass plates (7 × 7 cm) were main-
tained at a 1.0 mm distance (using a spacer) and sealed with silicone leaving only one side
open. A hot gel solution of Pb2+ (1% agar and 0.45 M Pb(NO3)2) was then poured into the
thin space between the plates with care not to allow any air bubble formation. The solution
was left to cool until gelation is complete, after which the open end of the cavity was sealed
with silicone. We thus had a thin square layer of lead nitrate gel sandwiched between two
glass plates sealed from all sides, and hence easy to manipulate. This “sealed square dish”
was immersed in a 1.0 M KF solution contained in a large vessel. Afterwards, while inside the
solution, the dish was struck with a hammer causing a set of fractures across the glass of its
top plate. Those fractures could to a certain extent simulate the cracks that occur in a rock
covered with drainage waters rich in dissolved minerals. After a time lag of 51 days (mea-
sured consistently in two samples) during which no precipitation was detected, random

Collect. Czech. Chem. Commun. (Vol. 67) (2002)

1734 Mandalian, Sultan:

FIG. 5
Photomicrographs of spatial portions of the dendrite cascades in Figs 3 and 4. The fractal di-
mension of each portion is reported in Table II

a b
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PbF2 crystallites started to appear along the cracks, then continued to form along the path-
way of fractures, but not linked in a network like the dendrites grown in the microslide
Liesegang experiments. Figure 6 highlights pictures of various crack zones illustrating the
initiation of the PbF2 crystallites on both sides of the fracture. The time evolution of the
pattern spreading, originating at the cracks then invading the whole area, is seen in Fig. 7.
Figure 8 highlights areas of the pattern from Fig. 7 photographed under microscope.

Evaporation

A very interesting network of dendritic structures was discovered when Pb(NO3)2 crystals
were grown from a solution by evaporation. These exotic patterns warrant a further investi-
gation. A number of experiments was subsequently performed by evaporating the solvent
from a gel layer containing Pb(NO3)2 at different concentrations (0.10, 0.30 and 0.50 M). In
order to maintain a uniform thickness of the gel layer (1.5 mm), the same volume (10.0 ml)
of gel solution was poured in dishes of similar geometry. The resulting macroscopic texture
of dendritic patterns, observed after evaporation, is shown in Fig. 9. Figure 10 displays pho-
tomicrographs of selected regions of the patterns obtained by evaporation (the 0.50 M case).
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FIG. 6
PbF2 dendrites obtained form crack infiltration experiments described in Experimental (Infil-
tration Experiments). A solution with [F–]0 = 1.0 M infiltrated and diffused through cracks
caused by hammering into a gel solution with [Pb2+]0 = 0.45 M. The different frames show dif-
ferent crack regions where the dendrite formation originates

a

b

c d



RESULTS AND DISCUSSION

Characterization and Discussion

Physical processes never lead to structures with perfect symmetry6. Geomet-
ric constructions constitute idealized structures for demonstrating the cal-
culation of exact fractal dimensions22. Such structures are highly symmetric
when built in a consistent reproduction of patterns and are termed, in that
case, deterministic fractals6. Structures having exactly the same fractal di-
mension, though without having the same visual appearance, are called
stochastic fractals. Physical processes are always subject to fluctuations and
thus lead to random fractals. Image analysis techniques add to small-
angle scattering and energy transfer methods in characterizing fractals19.
The most commonly used image analysis technique is the box-count
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FIG. 7
Time sequence of the infiltration/precipitation process described in Experimental (Infiltration
Experiments) and in Fig. 6. The experiment exhibited a delay of 51 days followed by a sudden
appearance of dendritic precipitate (PbF2) structures. The pattern, originating near the crack,
spreads gradually over the whole gel area. The time in days is displayed below the picture
frames

50
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53 57



method22,19,21. Given λ, a characteristic lower cut-off for the measuring
length scale, we consider a grid of square boxes of side λ. The ramified
structure has area nλ2, where n(λ) is the number of covered cells (boxes). Be-
cause the number of boxes n(λ) covers a spatial region of fractal dimension
D, and because n(λ) decreases as λ increases, it follows that n(λ) ≈ (1/λ)D.
The box-counting dimension is thus defined by taking the natural loga-
rithm of both sides.

D
n= ln ( )

ln( / )
λ
λ1

(1)

It is obvious that for a non-fractal object, the above definition yields a
trivial value for D, namely the embedded Euclidean dimension E. A plot of
ln n(λ) versus ln (1/λ) should yield a straight line of slope D, the fractal box-
dimension. Though physical fractal objects do not yield consistently the
same fractal dimension, the latter nevertheless gives a good measure when
all the values calculated for different portions of the same object fall within
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FIG. 8
Photomicrographs of PbF2 dendritic patterns obtained by infiltration experiments (Figs 6 and 7).
The patterns are analyzed in Table II

FIG. 9
Network patterns of Pb(NO3)2 of initial concentration C obtained by evaporation of an agar
gel solution of the salt. a C = 0.1 M, b C = 0.3 M, c C = 0.5 M

a b

a b c
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FIG. 10
Photomicrographs of the pattern in Fig. 9c obtained by evaporation. Initial concentration of
Pb(NO3)2 C = 0.5 M. The patterns are analyzed in Table II

b c

a

TABLE II
Fractal dimensions calculated using the box-counting method for the various micro-
structures illustrated in Figs 2, 5, 8 and 10. D, fractal dimension; σ, standard deviation

Plate Experiment type Container D σ

2a interdiffusion glass microslides 1.82 0.01

2b interdiffusion glass microslides 1.85 0.01

2c interdiffusion glass microslides 1.71 0.02

2d interdiffusion glass microslides 1.88 0.01

5a interdiffusion methacrylate glass microslides 1.82 0.01

5b interdiffusion methacrylate glass microslides 1.76 0.01

5c interdiffusion methacrylate glass microslides 1.77 0.01

8a hammering/infiltration glass plates 1.87 0.004

8b hammering/infiltration glass plates 1.86 0.003

10a evaporation (0.50 M) Petri dish 1.90 0.003

10b evaporation (0.50 M) Petri dish 1.83 0.01

10c evaporation (0.50 M) Petri dish 1.82 0.01



a narrow range (≈0.2 for an embedded dimension E = 2.0). Figure 11 high-
lights such plots for each type of dendritic pattern obtained (i.e. via inter-
diffusion, infiltration or evaporation), corresponding to frames 2b, 8a and
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FIG. 11
The ln n(λ) versus ln (1/λ) plots for the patterns in frames a 2b (interdiffusion), b 8a (infiltra-
tion) and c 10b (evaporation), respectively. The plots are linear with slopes equal to the box di-
mensions D. D = 1.85, 1.87 and 1.83, respectively
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10b, respectively. We see that the points fall on a straight line (almost a
perfect fit), whose calculated slope yields the fractal dimension D.

In Table II, we report values of the box-counting dimension for the pho-
tomicrographs of various patterns, computed by image analysis using the
Benoît23 software. The labels in the first column correspond to the plates
appearing in various figures. The entries in the second column indicate the
type of experiment producing the pattern.

We see that all the values of the fractal dimension in Table II (for PbF2
dendrites obtained via any experimental route and for Pb(NO3)2 by evapora-
tion), fall within a somewhat narrow range of 0.19. Thus we can say that all
the dendritic patterns obtained have essentially a similar fractal box dimen-
sion ranging from 1.71 to 1.90, with an average of 1.82 and a mid-range
value of 1.81. Because physical fractals are not exactly self-similar, the frac-
tal dimension is often reported over a range of values. A 1.7–1.9 interval
was reported for fractal clusters in zinc and iron aerosols19. A scatter around
the value 1.67 with a 0.11 span was found for 2D zinc radial electro-
deposition leaves11. Radial viscous fingering patterns obtained in Hele–
Shaw cells were shown to be fractal with box dimension in the region
1.75–1.85 24,25. The mean value 1.78 was found to characterize hydrous
manganese oxide deposits on the surface of Bavarian and Greek limestones,
resulting from reaction-diffusion processes16.

Mimura et al.18 proposed a number of reaction-diffusion models that de-
scribe the wide morphological diversity of bacterial growth patterns. The
analogy between the latter systems and precipitate patterns, along with the

Collect. Czech. Chem. Commun. (Vol. 67) (2002)

1740 Mandalian, Sultan:

FIG. 12
Dense branching morphology (DBM) pattern resembling that obtained in bacteria. In the dish:
1% agar gel solution with [Pb2+]0 = 0.30 M, in the tube: [F–]0 = 0.81 M



parameters controling their formation is under investigation. Interdiffusion
experiments (similar to those of Experimental (Interdiffusion Experiments))
performed in a Petri dish wherein the outer solution diffuses radially from a
central source yielded interesting dense branching morphology (DBM)
structures, shown in Fig. 12.

Networks of irregular macroscopic PbI2 patterns obtained from initially
homogeneous supercooled solutions showed a fractal nature with a lower
average dimension of 1.56 26. The pattern in the latter systems is described
as a two-dimensional network of pores with a characteristic length (and
subsequently fractal dimension) which is sensitive to initial concentration.

Thus we see that a rich diversity and complex structure is inherent to pre-
cipitate patterning systems and a variety of fractal morphologies can be ob-
tained.

This work was supported by a University Research Board (URB) grant No. DCU17996071617,
American University of Beirut.
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